Shinichiro Nishimatsu
   Department   Kawasaki Medical School  Kawasaki Medical School, Department of Natural Sciences,
   Position   Professor
Article types 原著
Language English
Peer review Peer reviewed
Title VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development.
Journal Formal name:Development, growth & differentiation
Abbreviation:Dev Growth Differ
ISSN code:00121592/1440169X
Volume, Issue, Page 50(3),pp.169-180
Author and coauthor Fujii Hidefumi, Sakai Masao, Nishimatsu Shin-ichiro, Nohno Tsutomu, Mochii Makoto, Orii Hidefumi, Watanabe Kenji
Publication date 2008/03
Summary We examined several candidate posterior/mesodermal inducing molecules using permanent blastula-type embryos (PBEs) as an assay system. Candidate molecules were injected individually or in combination with the organizer factor chordin mRNA. Injection of chordin alone resulted in a white hemispherical neural tissue surrounded by a large circular cement gland, together with anterior neural gene expression and thus the development of the anterior-most parts of the embryo, without mesodermal tissues. When VegT, eFGF or Xbra mRNAs were injected into a different blastomere of the chordin-injected PBEs, the embryos elongated and formed eye, muscle and pigment cells, and expressed mesodermal and posterior neural genes. These embryos formed the full spectrum of the anteroposterior embryonic axis. In contrast, injection of CSKA-Xwnt8 DNA into PBEs injected with chordin resulted in eye formation and expression of En2, a midbrain/hindbrain marker, and Xnot, a notochord marker, but neither elongation, muscle formation nor more posterior gene expression. Injection of chordin and posteriorizing molecules into the same cell did not result in elongation of the embryo. Thus, by using PBEs as the host test system we show that (i) overall anteroposterior neural development, mesoderm (muscle) formation, together with embryo elongation can occur through the synergistic effect(s) of the organizer molecule chordin, and each of the 'overall posteriorizing molecules' eFGF, VegT and Xbra; (ii) Xwnt8-mediated posteriorization is restricted to the eye level and is independent of mesoderm formation; and (iii) proper anteroposterior patterning requires a separation of the dorsalizing and posteriorizing gene expression domains.
DOI 10.1111/j.1440-169X.2008.01014.x
Document No. 18318733