イツミ モモエ
  逸見 百江
   所属   川崎医科大学  医学部 一般教養 自然科学
   職種   助教
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression.
掲載誌名 正式名:Cell calcium
略  称:Cell Calcium
ISSNコード:15321991/01434160
掲載区分国外
巻・号・頁 83,pp.102058
著者・共著者 Risa Yanai, Fumi Tetsuo, Shinichi Ito, Momoe Itsumi, Junko Yoshizumi, Tomoko Maki, Yoshihide Mori, Yasutaka Kubota, Shunichi Kajioka
発行年月 2019/11
概要 Bone morphogenetic protein-2 (BMP-2) promotes the differentiation of non-osteogenic mesenchymal cells to osteogenic cells. In this study, we isolated human adipose-derived stem cells (hASCs) and investigated the effects of recombinant human BMP-2 (rhBMP-2) and extracellular Ca2+ concentration ([Ca2+]out) on the osteogenic differentiation of hASCs. rhBMP-2 promoted calcium deposition in hASCs and stimulated the mRNA expressions of six proteins known to be involved in the osteogenic differentiation of hASCs: Runx2, osterix, alkaline phosphatase, osteonectin, bone sialoprotein and osteocalcin. Elevation of [Ca2+]out enhanced the level of alkaline phosphatase enzyme, increased the mRNA expressions of Runx2 and osteocalcin and induced the expressions of BMP-2 mRNA and protein in hASCs. Elevation of [Ca2+]out transiently increased the intracellular Ca2+ concentration ([Ca2+]in) due to activation of the calcium-sensing receptor (CaSR). The Ca2+-induced expressions of BMP-2 mRNA and protein were inhibited by the calmodulin antagonist, W-7. Furthermore, elevation of [Ca2+]out decreased the cytoplasmic level of phosphorylated nuclear factor of activated T-cell-2 (NFAT-2) and increased the nuclear level of dephosphorylated NFAT2. Taken together, these results suggest that rhBMP-2 promotes the osteogenic differentiation of hASCs. Furthermore, an increase in [Ca2+]out enhances the expression of BMP-2 via activation of the CaSR, elevation of [Ca2+]in and stimulation of Ca2+/calmodulin-dependent NFAT-signaling pathways.
DOI 10.1016/j.ceca.2019.102058
PMID 31425929