ヤマウチ アキラ
Akira Yamauchi
山内 明 所属 川崎医科大学 医学部 基礎医学 生化学 職種 教授 |
|
論文種別 | 原著 |
言語種別 | 英語 |
査読の有無 | 査読あり |
表題 | Identification of anti-SARS-CoV-2 agents based on flavor/fragrance compositions that inhibit the interaction between the virus receptor binding domain and human angiotensin converting enzyme 2. |
掲載誌名 | 正式名:PLoS One 略 称:PLoS One ISSNコード:19326203 |
掲載区分 | 国外 |
出版社 | PLOS |
巻・号・頁 | 17(12) |
著者・共著者 | Nishimura Y, Nomiyama K, Okamoto S, Igarashi M, Yorifuji Y, Sato Y, Kamezaki A, Morihara A, Kuribayashi F, Yamauchi A. |
担当区分 | 最終著者,責任著者 |
発行年月 | 2022/12/19 |
概要 | Coronavirus disease 2019 (COVID-19) pandemic poses a threat to human beings and numerous cases of infection as well as millions of victims have been reported. The binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD) to human angiotensin converting enzyme 2 (hACE2) is known to promote the engulfment of the virus by host cells. Employment of flavor/fragrance compositions to prevent SARS-CoV-2 infection by inhibiting the binding of viral RBD (vRBD) to hACE2 might serve as a favorable, simple, and easy method for inexpensively preventing COVID-19, as flavor/fragrance compositions are known to directly interact with the mucosa in the respiratory and digestive systems and have a long history of use and safety assessment. Herein we report the results of screening of flavor/fragrance compositions that inhibit the binding of vRBD to hACE2. We found that the inhibitory effect was observed with not only the conventional vRBD, but also variant vRBDs, such as L452R, E484K, and N501Y single-residue variants, and the K417N+E484K+N501Y triple-residue variant. Most of the examined flavor/fragrance compositions are not known to have anti-viral effects. Cinnamyl alcohol and Helional inhibited the binding of vRBD to VeroE6 cells, a monkey kidney cell line expressing ACE2. We termed the composition with inhibitory effect on vRBD-hACE2 binding as "the molecularly targeted flavor/fragrance compositions". COVID-19 development could be prevented by using these compositions with reasonable administration methods such as inhalation, oral administration, and epidermal application. |
DOI | 10.1371/journal.pone.0279182 |
PMID | 36534650 |
researchmap用URL | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279182 |