イワモト タカユキ
Takayuki Iwamoto
岩本 高行 所属 川崎医科大学 医学部 臨床医学 乳腺甲状腺外科学 職種 講師 |
|
論文種別 | 原著 |
言語種別 | 英語 |
査読の有無 | 査読あり |
表題 | Bayesian mixture models for assessment of gene differential behaviour and prediction of pCR through the integration of copy number and gene expression data. |
掲載誌名 | 正式名:PloS one 略 称:PLoS One ISSNコード:19326203/19326203 |
掲載区分 | 国外 |
巻・号・頁 | 8(7),pp.e68071 |
著者・共著者 | Filippo Trentini, Yuan Ji, Takayuki Iwamoto, Yuan Qi, Lajos Pusztai, Peter Müller |
発行年月 | 2013 |
概要 | We consider modeling jointly microarray RNA expression and DNA copy number data. We propose Bayesian mixture models that define latent Gaussian probit scores for the DNA and RNA, and integrate between the two platforms via a regression of the RNA probit scores on the DNA probit scores. Such a regression conveniently allows us to include additional sample specific covariates such as biological conditions and clinical outcomes. The two developed methods are aimed respectively to make inference on differential behaviour of genes in patients showing different subtypes of breast cancer and to predict the pathological complete response (pCR) of patients borrowing strength across the genomic platforms. Posterior inference is carried out via MCMC simulations. We demonstrate the proposed methodology using a published data set consisting of 121 breast cancer patients. |
DOI | 10.1371/journal.pone.0068071 |
PMID | 23874497 |