イワモト タカユキ   Takayuki Iwamoto
  岩本 高行
   所属   川崎医科大学  医学部 臨床医学 乳腺甲状腺外科学
   職種   講師
論文種別 原著
言語種別 英語
査読の有無 査読あり
表題 Bayesian mixture models for assessment of gene differential behaviour and prediction of pCR through the integration of copy number and gene expression data.
掲載誌名 正式名:PloS one
略  称:PLoS One
ISSNコード:19326203/19326203
掲載区分国外
巻・号・頁 8(7),pp.e68071
著者・共著者 Filippo Trentini, Yuan Ji, Takayuki Iwamoto, Yuan Qi, Lajos Pusztai, Peter Müller
発行年月 2013
概要 We consider modeling jointly microarray RNA expression and DNA copy number data. We propose Bayesian mixture models that define latent Gaussian probit scores for the DNA and RNA, and integrate between the two platforms via a regression of the RNA probit scores on the DNA probit scores. Such a regression conveniently allows us to include additional sample specific covariates such as biological conditions and clinical outcomes. The two developed methods are aimed respectively to make inference on differential behaviour of genes in patients showing different subtypes of breast cancer and to predict the pathological complete response (pCR) of patients borrowing strength across the genomic platforms. Posterior inference is carried out via MCMC simulations. We demonstrate the proposed methodology using a published data set consisting of 121 breast cancer patients.
DOI 10.1371/journal.pone.0068071
PMID 23874497